Math 434 Assignment 4

Due May 10

Assignments will be collected in class.

- 4. Let T be a complete theory. A complete n-type (of T) $p(x_1, \ldots, x_n)$ is a set of formulas in n free variables x_1, \ldots, x_n such that:
 - for every formula $\psi(x_1, \ldots, x_n) \in p, T \models \exists x_1, \ldots, x_n \psi(x_1, \ldots, x_n);$
 - for every formula $\psi(x_1, \ldots, x_n)$, either $\psi \in p$ or $\neg \psi \in p$.

We say that a model \mathcal{M} realizes a complete *n*-type *p* if there are $a_1, \ldots, a_n \in \mathcal{M}$ such that for every $\psi \in p$, $\mathcal{M} \models \psi(a_1, \ldots, a_n)$.

Show that there is a model of T that realizes every complete *n*-type of T.

Solution: We suppose that the language is countable, so that there are only countably many formulas. Let \mathcal{M} be a model of T and let \mathcal{U} be a non-principal ultrafilter on ω . Let $\mathcal{A} = \prod \mathcal{M}/\mathcal{U}$.

Fix an arbitrary *n*-type *p*. Let $\varphi_1, \varphi_2, \ldots$ be a list of the formulas in *p*. For each *i*, there are $a_1^i, \ldots, a_n^i \in \mathcal{M}$ such that

$$\mathcal{M} \vDash \varphi_1(a_1^i, \dots, a_n^i) \land \dots \land \varphi_i(a_1^i, \dots, a_n^i).$$

Let $a_j = [a_1^i] \in \mathcal{A}$. We claim that a_1, \ldots, a_n realizes p in \mathcal{A} . Indeed, for each formula $\varphi_i \in p$,

 $\{j \in \omega : \mathcal{M} \models \varphi_i(a_1^j, \dots, a_n^j)\} \supseteq \{j \in \omega : j \ge i\} \in \mathcal{U}$

and so by Los's theorem, $\mathcal{A} \vDash \varphi_i(a_1, \ldots, a_n)$.

7. Except for the axiom of infinity, all the axioms of ZFC hold in V_{ω} . Prove that the axiom of infinity does not hold, i.e., $V_{\omega} \models \neg(\exists x) [\emptyset \in x \land (\forall y \in x) (\{y\} \cup y \in x)]$. (This shows that the axiom of infinity is not implied by the remaining axioms of ZFC.)

Solution: Suppose that there is $x \in V_{\omega}$ such that V_{ω} thinks that x is inductive. Being inductive is Δ_0 so x is actually inductive. Since ω is the smallest inductive set, $\omega \subseteq x$. There is $n < \omega$ such that $x \in V_n$, so that $\omega \subseteq x \subseteq V_n$; then $\omega \in V_{n+1}$. But this cannot be true, a contradiction.